« Back to Glossary Index

What is it?

Quercetin is a plant pigment (flavonoid). It’s found in many plants and foods, such as red wine, onions, green tea, apples, and berries.

Quercetin has antioxidant and anti-inflammatory effects that might help reduce swelling, kill cancer cells, control blood sugar, and help prevent heart disease.

Quercetin is most commonly used for conditions of the heart and blood vessels and to prevent cancer. It is also used for arthritis, bladder infections, and diabetes, but there is no strong scientific evidence to support most of these uses. There is also no good evidence to support using quercetin for COVID-19.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for QUERCETIN are as follows:

Possibly ineffective for…

  • Athletic performance. Taking quercetin by mouth before exercise doesn’t decrease fatigue or improve exercise ability.

There is interest in using quercetin for a number of other purposes, but there isn’t enough reliable information to say whether it might be helpful.

Is it safe?

When taken by mouth: Quercetin is possibly safe for most people when used short-term. Quercetin has been safely used in doses up to 1 gram daily for 12 weeks. It’s not known if long-term use or higher doses are safe.

When applied to the skin: There isn’t enough reliable information to know if quercetin is safe or what the side effects might be.

Special precautions & warnings:

Pregnancy and breast-feeding: There isn’t enough reliable information to know if quercetin is safe to use when pregnant or breast-feeding. Stay on the safe side and avoid use.

Kidney problems: Quercetin might make kidney problems worse. Don’t use quercetin if you have kidney problems.

Are there interactions with medications?

Moderate
Be cautious with this combination.
Antibiotics (Quinolone antibiotics)
Some scientists think that taking quercetin along with certain antibiotics, called quinolone antibiotics, might decrease the effects of these antibiotics. But it’s too soon to know if this is a big concern.
Cyclosporine (Neoral, Sandimmune)
Quercetin might decrease how quickly the body breaks down cyclosporine. Taking quercetin with cyclosporine might increase the effects and side effects of cyclosporine.
Diclofenac (Voltaren, others)
Quercetin might decrease how quickly the body breaks down diclofenac. Taking quercetin with diclofenac might increase the effects and side effects of diclofenac.
Losartan (Cozaar)
Quercetin might change how the body absorbs and breaks down losartan. Taking quercetin with losartan might change the effects and side effects of losartan.
Medications changed by the liver (Cytochrome P450 2C8 (CYP2C8) substrates)
Some medications are changed and broken down by the liver. Quercetin might change how quickly the liver breaks down these medications. This could change the effects and side effects of these medications.
Medications changed by the liver (Cytochrome P450 2C9 (CYP2C9) substrates)
Some medications are changed and broken down by the liver. Quercetin might change how quickly the liver breaks down these medications. This could change the effects and side effects of these medications.
Medications changed by the liver (Cytochrome P450 2D6 (CYP2D6) substrates)
Some medications are changed and broken down by the liver. Quercetin might change how quickly the liver breaks down these medications. This could change the effects and side effects of these medications.
Medications changed by the liver (Cytochrome P450 3A4 (CYP3A4) substrates)
Some medications are changed and broken down by the liver. Quercetin might change how quickly the liver breaks down these medications. This could change the effects and side effects of these medications.
Medications for diabetes (Antidiabetes drugs)
Quercetin might lower blood sugar levels. Taking quercetin along with diabetes medications might cause blood sugar to drop too low. Monitor your blood sugar closely.
Medications for high blood pressure (Antihypertensive drugs)
Quercetin might lower blood pressure. Taking quercetin along with medications that lower blood pressure might cause blood pressure to go too low. Monitor your blood pressure closely.
Medications moved by pumps in cells (Organic Anion Transporter 1 (OAT1) Substrates)
Some medications are moved in and out of cells by pumps. Quercetin might change how these pumps work and change how much medication stays in the body. In some cases, this might change the effects and side effects of a medication.
Medications moved by pumps in cells (Organic Anion Transporter 3 (OAT3) Substrates)
Some medications are moved in and out of cells by pumps. Quercetin might change how these pumps work and change how much medication stays in the body. In some cases, this might change the effects and side effects of a medication.
Medications moved by pumps in cells (Organic anion-transporting polypeptide substrates)
Some medications are moved in and out of cells by pumps. Quercetin might change how these pumps work and change how much medication stays in the body. In some cases, this might change the effects and side effects of a medication.
Medications moved by pumps in cells (P-glycoprotein substrates)
Some medications are moved in and out of cells by pumps. Quercetin might change how these pumps work and change how much medication stays in the body. In some cases, this might change the effects and side effects of a medication.
Midazolam (Versed)
Quercetin might increase how quickly the body breaks down midazolam. Taking quercetin with midazolam might reduce the effects of midazolam.
Mitoxantrone
Quercetin might increase levels of mitoxantrone. Taking quercetin and mitoxantrone together might increase the effects and side effects of mitoxantrone.
Pravastatin (Pravachol)
Quercetin might decrease how quickly the body gets rid of pravastatin. Taking quercetin with pravastatin might increase the effects and side effects of pravastatin.
Prazosin (Minipress)
Quercetin might increase levels of prazosin. Taking quercetin and prazosin together might increase the effects and side effects of prazosin.
Quetiapine (Seroquel)
Quercetin might increase levels of quetiapine. Taking quercetin and quetiapine together might increase the effects and side effects of quetiapine.
Sulfasalazine (Azulfidine)
Quercetin might increase levels of sulfasalazine. Taking quercetin and sulfasalazine together might increase the effects and side effects of sulfasalazine.
Warfarin (Coumadin)
Quercetin might increase the effects that warfarin has on the body. Taking quercetin and warfarin together might increase the effects and side effects of warfarin, which could increase the risk of bruising and bleeding.

Are there interactions with herbs and supplements?

Herbs and supplements that might lower blood pressure
Quercetin might lower blood pressure. Taking it with other supplements that have the same effect might cause blood pressure to drop too much. Examples of supplements with this effect include andrographis, casein peptides, L-arginine, niacin, and stinging nettle.
Herbs and supplements that might lower blood sugar
Quercetin might lower blood sugar. Taking it with other supplements with similar effects might lower blood sugar too much. Examples of supplements with this effect include aloe, bitter melon, cassia cinnamon, chromium, and prickly pear cactus.

Are there interactions with foods?

There are no known interactions with foods.

How is it typically used?

Quercetin has most often been used by adults in doses of 250-1000 mg by mouth daily for up to 12 weeks. Speak with a healthcare provider to find out what dose might be best for a specific condition.

Other names

3,3′,4’5,7-Pentahydroxyflavone, Bioflavonoid, Bioflavonoid Complex, Bioflavonoid Concentrate, Bioflavonoid Extract, Bioflavonoïde, Bioflavonoïde de Citron, Bioflavonoïdes de Citron, Citrus Bioflavones, Citrus Bioflavonoid, Citrus Bioflavonoids, Citrus Bioflavonoid Extract, Citrus Flavones, Citrus Flavonoids, Complexe de Bioflavonoïde, Concentré de Bioflavonoïde, Extrait de Bioflavonoïde, Extrait de Bioflavonoïdes de Citron, Flavones de Citron, Flavonoid, Flavonoïde, Meletin, Mélétine, Quercetina, Quercétine, Sophretin, Sophrétine.

Methodology

To learn more about how this article was written, please see the Natural Medicines Comprehensive Database methodology.

References

  1. Song YK, Yoon JH, Woo JK, et al. Quercetin is a flavonoid breast cancer resistance protein inhibitor with an impact on the oral pharmacokinetics of sulfasalazine in rats. Pharmaceutics 2020;12:397. View abstract.
  2. Cheraghi E, Sajadi SMS, Soleimani Mehranjani M. The effect of quercetin on the quality of sperm parameters in frozen-thawed semen of patients with asthenospermia. Andrologia 2021;53:e14167. View abstract.
  3. Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial. Eur J Pharmacol 2022;914:174615. View abstract.
  4. Di Pierro F, Iqtadar S, Khan A, et al. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med 2021;14:2807-16. View abstract.
  5. Di Pierro F, Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med 2021;14:2359-66. View abstract.
  6. Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol Res. 2010;62:237-42. View abstract.
  7. Knab AM, Shanely RA, Jin F, Austin MD, Sha W, Nieman DC. Quercetin with vitamin C and niacin does not affect body mass or composition. Appl Physiol Nutr Metab. 2011;36:331-8. View abstract.
  8. Hamdy AA, Ibrahem MA. Management of aphthous ulceration with topical quercetin: a randomized clinical trial. J Contemp Dent Pract. 2010;11:E009-16. View abstract.
  9. Marseglia G, Licari A, Leonardi S, et al. A polycentric, randomized, parallel-group, study on Lertal®, a multicomponent nutraceutical, as preventive treatment in children with allergic rhinoconjunctivitis: phase II. Ital J Pediatr. 2019;45:84. View abstract.
  10. Ni Y, Duan Z, Zhou D, et al. Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. Front Pharmacol. 2020;11:802. View abstract.
  11. Li C, Wang X, Bi Y, et al. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy. Toxicol Sci. 2020;175:279-291. View abstract.
  12. Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78:615-626. View abstract.
  13. Bhutani P, Rajanna PK, Paul AT. Impact of quercetin on pharmacokinetics of quetiapine: insights from in-vivo studies in wistar rats. Xenobiotica. 2020:1-7. View abstract.
  14. Ou Q, Zheng Z, Zhao Y, Lin W. Impact of quercetin on systemic levels of inflammation: a meta-analysis of randomised controlled human trials. Int J Food Sci Nutr. 2020;71:152-163. View abstract.
  15. Bazzucchi I, Patrizio F, Ceci R, et al. Quercetin Supplementation Improves Neuromuscular Function Recovery from Muscle Damage. Nutrients. 2020;12:E2850. View abstract.
  16. Sajadi Hezaveh Z, Azarkeivan A, Janani L, Hosseini S, Shidfar F. The effect of quercetin on iron overload and inflammation in ß-thalassemia major patients: a double-blind randomized clinical trial. Complement Ther Med 2019;46:24-8. View abstract.
  17. Cesarone MR, Belcaro G, Hu S, et al. Supplementary prevention and management of asthma with quercetin phytosome: a pilot registry. Minerva Med 2019;110:524-9. View abstract.
  18. Vicente-Vicente L, González-Calle D, Casanova AG, et al. Quercetin, a promising clinical candidate for the prevention of contrast-induced nephropathy. Int J Mol Sci 2019;20:4961. View abstract.
  19. Zhao Q, Wei J, Zhang H. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica 2019;49:563-8. View abstract.
  20. Ostadmohammadi V, Milajerdi A, Ayati E, Kolahdooz F, Asemi Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019;33:1330-40. View abstract.
  21. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from Quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet 2019;44:169-77. View abstract.
  22. Khorshidi M, Moini A, Alipoor E, et al. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother Res. 2018;32:2282-2289. View abstract.
  23. Bazzucchi I, Patrizio F, Ceci R, et al. The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients. 2019;11. pii: E205. View abstract.
  24. Bedada SK, Neerati P. Evaluation of the effect of quercetin treatment on CYP2C9 enzyme activity of diclofenac in healthy human volunteers. Phytother Res. 2018 Feb;32:305-311. doi: 10.1002/ptr.5978. View abstract.
  25. Suardi N, Gandaglia G, Nini A, et al. Effects of Difaprost® on voiding dysfunction, histology and inflammation markers in patients with benign prostatic hyperplasia who are candidates for surgical treatment. Minerva Urol Nefrol. 2014;66:119-25. View abstract.
  26. Sahebkar A. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2017;57:666-676. View abstract.
  27. Rezvan N, Moini A, Janani L, et al. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: A randomized placebo-controlled double-blind clinical trial. Horm Metab Res. 2017;49:115-121. View abstract.
  28. Torella M, Del Deo F, Grimaldi A, et al. Efficacy of an orally administered combination of hyaluronic acid, chondroitin sulfate, curcumin and quercetin for the prevention of recurrent urinary tract infections in postmenopausal women. Eur J Obstet Gynecol Reprod Biol. 2016;207:125-128. View abstract.
  29. Larson A, Witman MA, Guo Y, et al. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide. Nutr Res. 2012;32:557-64. View abstract.
  30. Ahrens MJ, Thompson DL. Effect of emulin on blood glucose in type 2 diabetics. J Med Food. 2013;16:211-5. View abstract.
  31. Woo HD, Kim J. Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS One. 2013;8:e75604. View abstract.
  32. Palleschi G, Carbone A, Ripoli A, et al. A prospective study to evaluate the efficacy of Cistiquer in improving lower urinary tract symptoms in females with urethral syndrome. Minerva Urol Nefrol. 2014;66:225-32. View abstract.
  33. Kooshyar MM, Mozafari PM, Amirchaghmaghi M, et al. A randomized placebo-controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J Clin Diagn Res. 2017;11:ZC46-ZC50. View abstract.
  34. Serban MC, Sahebkar A, Zanchetti A, et al; Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5. pii: e002713. View abstract.
  35. Javadi F, Ahmadzadeh A, Eghtesadi S, et al. The effect of quercetin on inflammatory factors and
    clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J Am Coll Nutr. 2017;36:9-15.
    View abstract.
  36. Taliou A, Zintzaras E, Lykouras L, Francis K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther. 2013;35:592-602. View abstract.
  37. Nishijima T, Takida Y, Saito Y, Ikeda T, Iwai K. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects. Br J Nutr. 2015 May 28;113:1531-8. View abstract.
  38. Wu LX, Guo CX, Chen WQ, et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: an in vitro and in vivo assessment. Br J Clin Pharmacol 2012;73:750-7. View abstract.
  39. Nguyen MA, Staubach P, Wolffram S, Langguth P. Effect of single-dose and short-term administration of quercetin on the pharmacokinetics of talinolol in humans – Implications for the evaluation of transporter-mediated flavonoid-drug interactions. Eur J Pharm Sci 2014;61:54-60.
« Back to Glossary Index

RELATED POSTS

Comments are disabled