« Back to Glossary Index

What is it?

Blue-green algae are a group of bacteria. They can be used as a source of protein, but contain no more protein than meat or milk.

Blue-green algae produce blue-green colored pigments and are high in protein, iron, and other minerals. They grow in saltwater and some large freshwater lakes. They have been used for food for several centuries in Mexico and some African countries. In the US, they’ve been sold in supplements since the late 1970s.

People use blue-green algae for treating high blood pressure and as a protein supplement. It’s also used for high levels of cholesterol or other fats (lipids) in the blood, diabetes, obesity, and many other conditions. But there is no good scientific evidence to support these other uses.

Some blue-green algae products are grown under controlled conditions. Others are grown in a natural setting, where they’re more likely to be contaminated. Only use products that have been tested and are free of contaminants such as heavy metals, liver toxins called microcystins, and harmful bacteria. Don’t confuse blue-green algae with other algaes, like Ascophyllum nodosum, Ecklonia cava, Fucus Vesiculosis, or Laminaria.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for BLUE-GREEN ALGAE are as follows:

Possibly effective for…

  • High blood pressure. Taking blue-green algae by mouth seems to reduce blood pressure in some people with high blood pressure.

There is interest in using blue-green algae for a number of other purposes, but there isn’t enough reliable information to say whether it might be helpful.

Is it safe?

When taken by mouth: Blue-green algae products that are free of contaminants are possibly safe for most people when used short-term. Doses up to 19 grams daily have been used safely for up to 2 months. Lower doses of 10 grams daily have been used safely for up to 6 months. Side effects are typically mild and may include nausea, vomiting, diarrhea, headache, and dizziness.

But blue-green algae products that are contaminated are possibly unsafe. Contaminated blue-green algae can cause liver damage, vomiting, weakness, rapid heartbeat, shock, and death. Don’t use any blue-green algae product that hasn’t been tested and found to be free of microcystins and other contaminants.

Special precautions & warnings:

Pregnancy and breast-feeding: There isn’t enough information available to know if it is safe to use blue-green algae when pregnant or breast-feeding. Contaminated blue-green algae products contain harmful toxins that might be transferred to an infant during pregnancy or through breast milk. Stay on the safe side and avoid use.

Children: Blue-green algae are possibly unsafe for children. Children are more sensitive to contaminated blue-green algae products than adults.

Auto-immune diseases such as multiple sclerosis (MS), lupus (systemic lupus erythematosus, SLE), rheumatoid arthritis (RA), pemphigus vulgaris (a skin condition), and others: Blue-green algae might cause the immune system to become more active, and this could increase the symptoms of auto-immune diseases. If you have one of these conditions, it’s best to avoid using blue-green algae.

Surgery: Blue-green algae might lower blood sugar levels. There is some concern that it might interfere with blood sugar control during and after surgery. Stop using blue-green algae at least 2 weeks before a scheduled surgery.

Are there interactions with medications?

Moderate
Be cautious with this combination.
Medications for diabetes (Antidiabetes drugs)
Blue-green algae might lower blood sugar levels. Taking blue-green algae along with diabetes medications might cause blood sugar to drop too low. Monitor your blood sugar closely.
Medications that decrease the immune system (Immunosuppressants)
Blue-green algae can increase the activity of the immune system. Some medications, such as those used after a transplant, decrease the activity of the immune system. Taking blue-green algae along with these medications might decrease the effects of these medications.
Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)
Blue-green algae might slow blood clotting. Taking blue-green algae along with medications that also slow blood clotting might increase the risk of bruising and bleeding.

Are there interactions with herbs and supplements?

Herbs and supplements that might lower blood sugar
Blue-green algae might lower blood sugar. Taking it with other supplements with similar effects might lower blood sugar too much. Examples of supplements with this effect include aloe, bitter melon, cassia cinnamon, chromium, and prickly pear cactus.
Herbs and supplements that might slow blood clotting
Blue-green algae might slow blood clotting and increase the risk of bleeding. Taking it with other supplements with similar effects might increase the risk of bleeding in some people. Examples of supplements with this effect include garlic, ginger, ginkgo, nattokinase, and Panax ginseng.
Iron
Blue-green algae can decrease the amount of iron the body can absorb. Taking blue-green algae with iron supplements might decrease the effects of the iron supplement.

Are there interactions with foods?

Keep in mind that taking blue-green algae can decrease the amount of iron the body can absorb from food and supplements.

How is it typically used?

Blue-green algae has most often been used by adults in doses of 1-10 grams by mouth daily for up to 6 months. Only use products that have been tested and are free of contaminants such as heavy metals, liver toxins called microcystins, and harmful bacteria. Speak with a healthcare provider to find out what product and dose might be best for a specific condition.

Other names

AFA, Algae, Algas Verdiazul, Algues Bleu-Vert, Algues Bleu-Vert du Lac Klamath, Anabaena, Aphanizomenon flos-aquae, Arthrospira fusiformis, Arthrospira maxima, Arthrospira platensis, BGA, Blue Green Algae, Blue-Green Micro-Algae, Cyanobacteria, Cyanobactérie, Cyanophycée, Dihe, Espirulina, Hawaiian Spirulina, Klamath, Klamath Lake Algae, Lyngbya wollei, Microcystis aeruginosa and other Microcystis species, Nostoc ellipsosporum, Spirulina Blue-Green Algae, Spirulina fusiformis, Spirulina maxima, Spirulina platensis, Spiruline, Spiruline d’Hawaii, Tecuitlatl.

Methodology

To learn more about how this article was written, please see the Natural Medicines Comprehensive Database methodology.

References

  1. El-Shanshory M, Tolba O, El-Shafiey R, Mawlana W, Ibrahim M, El-Gamasy M. Cardioprotective effects of spirulina therapy in children with beta-thalassemia major. J Pediatr Hematol Oncol. 2019;41:202-206. View abstract.
  2. Sandhu JS, Dheera B, Shweta S. Efficacy of spirulina supplementation on isometric strength and isometric endurance of quadriceps in trained and untrained individuals–a comparative study. Ibnosina J. Med. & Biomed. Sci. 2010;2.
  3. Chaouachi M, Gautier S, Carnot Y, et al. Spirulina platensis provides a small advantage in vertical jump and sprint performance but does not improve elite rugby players’ body composition. J Diet Suppl. 2020:1-16. View abstract.
  4. Gurney T, Spendiff O. Spirulina supplementation improves oxygen uptake in arm cycling exercise. Eur J Appl Physiol. 2020;120:2657-2664. View abstract.
  5. Zarezadeh M, Faghfouri AH, Radkhah N, et al. Spirulina supplementation and anthropometric indices: A systematic review and meta-analysis of controlled clinical trials. Phytother Res. 2020. View abstract.
  6. Moradi S, Ziaei R, Foshati S, Mohammadi H, Nachvak SM, Rouhani MH. Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med. 2019;47:102211. View abstract.
  7. Hamedifard Z, Milajerdi A, Reiner Z, Taghizadeh M, Kolahdooz F, Asemi Z. The effects of spirulina on glycemic control and serum lipoproteins in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33:2609-2621. View abstract.
  8. Hernández-Lepe MA, Olivas-Aguirre FJ, Gómez-Miranda LM, Hernández-Torres RP, Manríquez-Torres JJ, Ramos-Jiménez A. Systematic physical exercise and Spirulina maxima supplementation improve body composition, cardiorespiratory fitness, and blood lipid profile: Correlations of a randomized double-blind controlled trial. Antioxidants (Basel). 2019;8:507. View abstract.
  9. Yousefi R, Mottaghi A, Saidpour A. Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complement Ther Med 2018;40:106-12. doi: 10.1016/j.ctim.2018.08.003. View abstract.
  10. Vidé J, Bonafos B, Fouret G, et al. Spirulina platensis and silicon-enriched spirulina equally improve glucose tolerance and decrease the enzymatic activity of hepatic NADPH oxidase in obesogenic diet-fed rats. Food Funct 2018;9:6165-78. doi: 10.1039/c8fo02037j. View abstract.
  11. Hernández-Lepe MA, López-Díaz JA, Juárez-Oropeza MA, et al. Effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program on the body composition and cardiorespiratory fitness of overweight or obese subjects: a double-blind, randomized, and crossover controlled trial. Mar Drugs 2018;16. pii: E364. doi: 10.3390/md16100364. View abstract.
  12. Martínez-Sámano J, Torres-Montes de Oca A, Luqueño-Bocardo OI, et al. Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: results from exploratory controlled clinical trial. Mar Drugs 2018;16. pii: E496. doi: 10.3390/md16120496. View abstract.
  13. Miczke A, Szulinska M, Hansdorfer-Korzon R, et al. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. Eur Rev Med Pharmacol Sci 2016;20:150-6. View abstract.
  14. Zeinalian R, Farhangi MA, Shariat A, Saghafi-Asl M. The effects of Spirulina platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med 2017;17:225. View abstract.
  15. Suliburska J, Szulinska M, Tinkov AA, Bogdanski P. Effect of Spirulina maxima supplementation on calcium, magnesium, iron, and zinc status in obese patients with treated hypertension. Biol Trace Elem Res 2016;173:1-6. View abstract.
  16. Johnson M, Hassinger L, Davis J, Devor ST, DiSilvestro RA. A randomized, double blind, placebo controlled study of spirulina supplementation on indices of mental and physical fatigue in men. Int J Food Sci Nutr 2016;67:203-6. View abstract.
  17. Jensen GS, Drapeau C, Lenninger M, Benson KF. Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: results from a randomized, double-Blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J Med Food 2016;19:645-53. View abstract.
  18. Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. Detection of cyanotoxins in algae dietary supplements. Toxins (Basel) 2017;9. pii: E76. View abstract.
  19. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO.
  20. Cha BG, Kwak HW, Park AR, et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract. Biopolymers 2014;101:307-18. View abstract.
  21. Majdoub H, Ben Mansour M, Chaubet F, et al. Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim Biophys Acta 2009;1790:1377-81. View abstract.
  22. Watanabe F, Katsura H, Takenaka S, et al. Pseudovitamin B12 is the predominant cobamide of an algal health food, spirulina tablets. J Ag Food Chem 1999;47:4736-41. View abstract.
  23. Ramamoorthy A, Premakumari S. Effect of supplementation of spirulina on hypercholesterolemic patients. J Food Sci Technol 1996;33:124-8.
  24. Ciferri O. Spirulina, the edible microorganism. Microbiol Rev 1983;47:551-78. View abstract.
  25. Karkos PD, Leong SC, Karkos CD, et al. Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med 2011;531053. doi: 10.1093/ecam/nen058. Epub 2010 Oct 19. View abstract.
  26. Marles RJ, Barrett ML, Barnes J, et al. United States Pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 2011;51:593-604. View abstract.
  27. Petrus M, Culerrier R, Campistron M, et al. First case report of anaphylaxis to spirulin: identification of phycocyanin as responsible allergen. Allergy 2010;65:924-5. View abstract.
  28. Rzymski P, Niedzielski P, Kaczmarek N, Jurczak T, Klimaszyk P. The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning. Harmful Algae 2015;46:34-42.
  29. Serban MC, Sahebkar A, Dragan S, et al. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin Nutr 2015. http://dx.doi.org/10.1016/j.clnu.2015.09.007. [Epub ahead of print] View abstract.
  30. Mahendra J, Mahendra L, Muthu J, John L, Romanos GE. Clinical effects of subgingivally delivered spirulina gel in chronic periodontitis cases: a placebo controlled clinical trial. J Clin Diagn Res 2013;7:2330-3. View abstract.
  31. Mazokopakis EE, Starakis IK, Papadomanolaki MG, Mavroeidi NG, Ganotakis ES. The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study. J Sci Food Agric 2014;94:432-7. View abstract.
  32. Winter FS, Emakam F, Kfutwah A, et al. The effect of Arthrospira platensis capsules on CD4 T-cells and antioxidative capacity in a randomized pilot study of adult women infected with human immunodeficiency virus not under HAART in Yaoundé, Cameroon. Nutrients 2014;6:2973-86. View abstract.
  33. Le TM, Knulst AC, Röckmann H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol 2014;74:309-10. View abstract.
  34. Ngo-Matip ME, Pieme CA, Azabji-Kenfack M, et al. Effects of Spirulina platensis supplementation on lipid profile in HIV-infected antiretroviral naïve patients in Yaounde-Cameroon: a randomized trial study. Lipids Health Dis 2014;13:191. doi: 10.1186/1476-511X-13-191. View abstract.
  35. Heussner AH, Mazija L, Fastner J, Dietrich DR. Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 2012;265:263-71. View abstract.
  36. Habou H, Degbey H Hamadou B. Évaluation de l’efficacité de la supplémentation en spiruline du régime habituel des enfants atteints de malnutrition proteinoénergétique sévère (à propos de 56 cas). Thèse de doctorat en médecine Niger 2003;1.
  37. Bucaille P. Intérêt et efficacité de l’algue spiruline dans l’alimentation des enfants présentant une malnutrition protéinoénergétique en milieu tropical. Thèse de doctorat en médecine.Toulouse-3 université Paul-Sabatier 1990;Thèse de doctorat en médecine. Toulouse-3 université Paul-Sabatier:1.
  38. Sall MG, Dankoko B Badiane M Ehua E. Résultats d’un essai de réhabilitation nutritionnelle avec la spiruline à Dakar. Med Afr Noire 1999;46:143-146.
  39. Venkatasubramanian K, Edwin N in collaboration with Antenna technologies Geneva and Antenna trust Madurai. A study on preschool nutrition supplementation family income booster by Spirulina. Madurai Medical College 1999;20.
  40. Ishii, K., Katoch, T., Okuwaki, Y., and Hayashi, O. Influence of dietary Spirulina platensis on IgA level in human saliva. J Kagawa Nutr Univ 1999;30:27-33.
  41. Kato T, Takemoto K, Katayama H, and et al. Effects of spirulina (Spirulina platensis) on dietary hypercholesterolemia in rats. Nippon Eiyo Shokuryo Gakkaishi (J Jpn Soc Nutr Food Sci) 1984;37:323-332.
  42. Iwata K, Inayama T, and Kato T. Effects of spirulina platensis on fructose-induced hyperlipidemia in rats. Nippon Eiyo Shokuryo Gakkaishi (J Jpn Soc Nutr Food Sci) 1987;40:463-467.
  43. Becker EW, Jakober B, Luft D, and et al. Clinical and biochemical evaluations of the alga spirulina with regard to its application in the treatment of obesity. A double-blind cross-over study. Nutr Report Internat 1986;33:565-574.
  44. Mani UV, Desai S, and Iyer U. Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceut 2000;2:25-32.
« Back to Glossary Index

RELATED POSTS

Comments are disabled