What is it?
Stevia contains chemicals that are 200-300 times sweeter than sucrose sugar.
People take stevia for obesity, high blood pressure, diabetes, and many other conditions, but there is no good scientific evidence to support these uses.
In the US, stevia leaves and extracts are available as supplements, but are not approved for use as sweeteners. Rebaudioside A (also called rebiana), one of the chemicals in stevia, is approved as a food sweetener.
How effective is it?
There is interest in using stevia for a number of purposes, but there isn’t enough reliable information to say whether it might be helpful.
Is it safe?
There isn’t enough reliable information to know if whole stevia or stevia extracts are safe or what the side effects might be.
Special precautions & warnings:
Pregnancy and breast-feeding: There isn’t enough reliable information to know if it is safe to take stevia when pregnant or breast-feeding. Stay on the safe side and avoid use.
Allergy to ragweed and related plants: Stevia is in the Asteraceae/Compositae plant family. This family includes ragweed, chrysanthemums, marigolds, daisies, and many other plants. In theory, people who are sensitive to ragweed and related plants may also be sensitive to stevia.
Are there interactions with medications?
- Lithium
- Stevia might have an effect like a water pill or “diuretic.” Taking stevia might decrease how well the body gets rid of lithium. This could increase how much lithium is in the body and result in serious side effects. Talk with your healthcare provider before using this product if you are taking lithium. Your lithium dose might need to be changed.
- Medications for diabetes (Antidiabetes drugs)
- Stevia might lower blood sugar levels. Taking stevia along with diabetes medications might cause blood sugar to drop too low. Monitor your blood sugar closely.
- Medications for high blood pressure (Antihypertensive drugs)
- Stevia might lower blood pressure. Taking stevia along with medications that lower blood pressure might cause blood pressure to go too low. Monitor your blood pressure closely.
Are there interactions with herbs and supplements?
- Herbs and supplements that might lower blood pressure
- Stevia might lower blood pressure. Taking it with other supplements that have the same effect might cause blood pressure to drop too much. Examples of supplements with this effect include andrographis, casein peptides, L-arginine, niacin, and stinging nettle.
- Herbs and supplements that might lower blood sugar
- Stevia might lower blood sugar. Taking it with other supplements with similar effects might lower blood sugar too much. Examples of supplements with this effect include aloe, bitter melon, cassia cinnamon, chromium, and prickly pear cactus.
Are there interactions with foods?
- There are no known interactions with foods.
How is it typically used?
As medicine, there isn’t enough reliable information to know what an appropriate dose of stevia might be. Keep in mind that natural products are not always necessarily safe and dosages can be important. Be sure to follow relevant directions on product labels and consult a healthcare professional before using.
Other names
Methodology
To learn more about how this article was written, please see the Natural Medicines Comprehensive Database methodology.
References
- US Food and Drug Administration. Import Alert 45-06: Detention without Physical Examination of Stevia Leaves, Crude Extracts of Stevia Leaves and foods Containing Stevia Leaves and/or Stevia Extracts. October 4, 2021. Available at: https://www.accessdata.fda.gov/cms_ia/importalert_119.html. Accessed on: May 6, 2022.
- Abdel-Aal RA, Abdel-Rahman MS, Al Bayoumi S, Ali LA. Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. J Ethnopharmacol 2021;265:113188. View abstract.
- Stamataki NS, Crooks B, Ahmed A, McLaughlin JT. Effects of the Daily Consumption of Stevia on Glucose Homeostasis, Body Weight, and Energy Intake: A Randomised Open-Label 12-Week Trial in Healthy Adults. Nutrients 2020;12:3049. View abstract.
- EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, et al. Safety of a proposed amendment of the specifications for steviol glycosides (E 960) as a food additive: to expand the list of steviol glycosides to all those identified in the leaves of Stevia Rebaudiana Bertoni. EFSA J 2020;18:e06106. View abstract.
- Stamataki NS, Scott C, Elliott R, McKie S, Bosscher D, McLaughlin JT. Stevia Beverage Consumption prior to Lunch Reduces Appetite and Total Energy Intake without Affecting Glycemia or Attentional Bias to Food Cues: A Double-Blind Randomized Controlled Trial in Healthy Adults. J Nutr. 2020;150:1126-1134. View abstract.
- Farhat G, Berset V, Moore L. Effects of Stevia Extract on Postprandial Glucose Response, Satiety and Energy Intake: A Three-Arm Crossover Trial. Nutrients. 2019;11:3036. View abstract.
- Ajami M, Seyfi M, Abdollah Pouri Hosseini F, et al. Effects of stevia on glycemic and lipid profile of type 2 diabetic patients: A randomized controlled trial. Avicenna J Phytomed. 2020;10:118-127. View abstract.
- Lemus-Mondaca R, Vega-Galvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012;132:1121-1132.
- Taware, A. S., Mukadam, D. S., and Chavan, A. M. Antimicrobial Activity of Different Extracts of Callus and Tissue Cultured Plantlets of Stevia Rebaudiana (Bertoni). Journal of Applied Science Research 2010;6:883-887.
- Yadav, A. A review on the improvement of stevia [Stevia rebaudiana (Bertoni). Canadian Journal of Plant Science 2011;91:1-27.
- Klongpanichpak, S., Temcharoen, P., Toskulkao, C., Apibal, S., and Glinsukon, T. Lack of mutagenicity of stevioside and steviol in Salmonella typhimurium TA 98 and TA 100. J Med Assoc Thai. 1997;80 Suppl 1:S121-S128. View abstract.
- D’Agostino, M., De Simone, F., Pizza, C., and Aquino, R. [Sterols in Stevia rebaudiana Bertoni]. Boll.Soc Ital Biol Sper. 12-30-1984;60:2237-2240. View abstract.
- Kinghorn, A. D., Soejarto, D. D., Nanayakkara, N. P., Compadre, C. M., Makapugay, H. C., Hovanec-Brown, J. M., Medon, P. J., and Kamath, S. K. A phytochemical screening procedure for sweet ent-kaurene glycosides in the genus Stevia. J Nat Prod. 1984;47:439-444. View abstract.
- Chaturvedula, V. S. and Prakash, I. Structures of the novel diterpene glycosides from Stevia rebaudiana. Carbohydr.Res 6-1-2011;346:1057-1060. View abstract.
- Chaturvedula, V. S., Rhea, J., Milanowski, D., Mocek, U., and Prakash, I. Two minor diterpene glycosides from the leaves of Stevia rebaudiana. Nat.Prod Commun 2011;6:175-178. View abstract.
- Li, J., Jiang, H., and Shi, R. A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni. Nat.Prod Res 2009;23:1378-1383. View abstract.
- Yang, P. S., Lee, J. J., Tsao, C. W., Wu, H. T., and Cheng, J. T. Stimulatory effect of stevioside on peripheral mu opioid receptors in animals. Neurosci.Lett 4-17-2009;454:72-75. View abstract.
- Takasaki, M., Konoshima, T., Kozuka, M., Tokuda, H., Takayasu, J., Nishino, H., Miyakoshi, M., Mizutani, K., and Lee, K. H. Cancer preventive agents. Part 8: Chemopreventive effects of stevioside and related compounds. Bioorg.Med.Chem. 1-15-2009;17:600-605. View abstract.
- Geuns, J. M., Buyse, J., Vankeirsbilck, A., and Temme, E. H. Metabolism of stevioside by healthy subjects. Exp Biol Med (Maywood.) 2007;232:164-173. View abstract.
- Boonkaewwan, C., Toskulkao, C., and Vongsakul, M. Anti-Inflammatory and Immunomodulatory Activities of Stevioside and Its Metabolite Steviol on THP-1 Cells. J Agric.Food Chem 2-8-2006;54:785-789. View abstract.
- Chen, T. H., Chen, S. C., Chan, P., Chu, Y. L., Yang, H. Y., and Cheng, J. T. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 2005;71:108-113. View abstract.
- Abudula, R., Jeppesen, P. B., Rolfsen, S. E., Xiao, J., and Hermansen, K. Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 2004;53:1378-1381. View abstract.
- Gardana, C., Simonetti, P., Canzi, E., Zanchi, R., and Pietta, P. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J.Agric.Food Chem. 10-22-2003;51:6618-6622. View abstract.
- Jeppesen, P. B., Gregersen, S., Rolfsen, S. E., Jepsen, M., Colombo, M., Agger, A., Xiao, J., Kruhoffer, M., Orntoft, T., and Hermansen, K. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 2003;52:372-378. View abstract.
- Koyama, E., Kitazawa, K., Ohori, Y., Izawa, O., Kakegawa, K., Fujino, A., and Ui, M. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food Chem.Toxicol. 2003;41:359-374. View abstract.
- Yasukawa, K., Kitanaka, S., and Seo, S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol Pharm Bull. 2002;25:1488-1490. View abstract.
- Jeppesen, P. B., Gregersen, S., Alstrup, K. K., and Hermansen, K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002;9:9-14. View abstract.
- Lee, C. N., Wong, K. L., Liu, J. C., Chen, Y. J., Cheng, J. T., and Chan, P. Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Med 2001;67:796-799. View abstract.
- Ferri LA, Alves-Do-Prado W, Yamada SS, et al. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res 2006;20:732-6. View abstract.
- Barriocanal LA, Palacios M, Benitez G, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 2008;51:37-41. View abstract.
- Boonkaewwan C, Ao M, Toskulkao C, Rao MC. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agric Food Chem 2008;56:3777-84. View abstract.
- Prakash I, Dubois GE, Clos JF, et al. Development of rebiana, a natural, non-caloric sweetener. Food Chem Toxicol 2008;46 Suppl 7:S75-82. View abstract.
- Maki KC, Curry LL, Carakostas MC, et al. The hemodynamic effects of rebaudioside A in healthy adults with normal and low-normal blood pressure. Food Chem Toxicol 2008;46 Suppl 7:S40-6. View abstract.
- Brusick DJ. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem Toxicol 2008;46 Suppl 7:S83-91. View abstract.
- CFSAN/Office of Food Additive Safety. Agency Response Letter: GRAS Notice No. 000252. U.S. Food and Drug Administration, December 17, 2008. Available at: http://www.cfsan.fda.gov/~rdb/opa-g252.html.
- CFSAN/Office of Food Additive Safety. GRAS Notices Received in 2008. GRN No. 252. U.S. Food and Drug Administration, December 2008. Available at: http://www.cfsan.fda.gov/~rdb/opa-gn08.html.
- Lailerd N, Saengsirisuwan V, Sloniger JA, et al. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 2004;53:101-7. View abstract.
- Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004;53:73-6. View abstract.
- Geuns JM. Stevioside. Phytochemistry 2003;64:913-21. View abstract.
- Chan P, Tomlinson B, Chen YJ, et al. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol 2000;50:215-20. View abstract.
- Hsieh MH, Chan P, Sue YM, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther 2003;25:2797-808. View abstract.
- FDA. Office of Regulatory Affairs. Automatic detention of stevia leaves, extract of stevia leaves, and food containing stevia. http://www.fda.gov/ora/fiars/ora_import_ia4506.html (Accessed 21 April 2004).
- Wasuntarawat C, Temcharoen P, Toskulkao C, et al. Developmental toxicity of steviol, a metabolite of stevioside, in the hamster. Drug Chem Toxicol 1998;21:207-22. View abstract.
- Toskulkao C, Sutheerawatananon M, Wanichanon C, et al. Effects of stevioside and steviol on intestinal glucose absorption in hamsters. J Nutr Sci Vitaminol (Tokyo) 1995;41:105-13. View abstract.
- Melis MS. Effects of chronic administration of Stevia rebaudiana on fertility in rats. J Ethnopharmacol 1999;67:157-61. View abstract.
- Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K. Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 2000;49:208-14. View abstract.
- Melis MS, Sainati AR. Effect of calcium and verapamil on renal function of rats during treatment with stevioside. J Ethnopharmacol 1991;33:257-622. View abstract.
- Hubler MO, Bracht A, Kelmer-Bracht AM. Influence of stevioside on hepatic glycogen levels in fasted rats. Res Commun Chem Pathol Pharmacol 1994;84:111-8. View abstract.
- Pezzuto JM, Compadre CM, Swanson SM, et al. Metabolically activated steviol, the aglycone of stevioside, is mutagenic. Proc Natl Acad Sci USA 1985;82:2478-82. View abstract.
- Matsui M, Matsui K, Kawasaki Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis 1996;11:573-9. View abstract.
- Melis MS. Chronic administration of aqueous extract of Stevia rebaudiana in rats: renal effects. J Ethnopharmacol 1995;47:129-34. View abstract.
- Melis MS. A crude extract of Stevia rebaudiana increases the renal plasma flow of normal and hypertensive rats. Braz J Med Biol Res 1996;29:669-75. View abstract.
- Chan P, Xu DY, Liu JC, et al. The effect of stevioside on blood pressure and plasma catech